

Advanced Building & Urban Design

SUSTAINABILITY AT ALL SCALES

ABUD is a consultancy firm empowered

by engineers, architects and researchers

specialized in sustainable building

and urban design.

Industry	R&D and consultancy in sustainable building and urban design
Headquarter	Budapest, Hungary (Europe)
Company type	SME
Clientele	Governmental and municipal stakeholders; Architectural studios and engineers; Constructors and operators; Investors and developers; Scientific and professional organizations and universities
Scale	Building / Neighborhood / Urban
Academic papers EU funding programmes	97+ in renowned international journals Framework 7, Horizon 2020, Urban Innovation Action (with 153 partners from 32 countries)

Fields of Expertise

Strategies for Sustainable Strategies for Sus and Smart Urban Transformation Transformation

Research & Innovation

Sustainable Building Engineering and Design Consultancy

Diagnostics & Rating Systems

Qualifications

DESIGN AND ENGINEERING

- Architectural and Building Engineering
- ClimaDesign®
- Urban Design
- Urban Planning and Management
- Urban and Facility Energy Engineer
- Energy & Environmental Engineering
- Mechanical Modelling Engineering
- Building Energy Engineering
- ECBC Master Trainer
- Smart Buildings & Cities
- Renewable Energy Systems & the Environment
- Electrical & Computer Engineering

DATA SCIENCE

SOCIOLOGY AND SOCIAL ANTHROPOLOGY

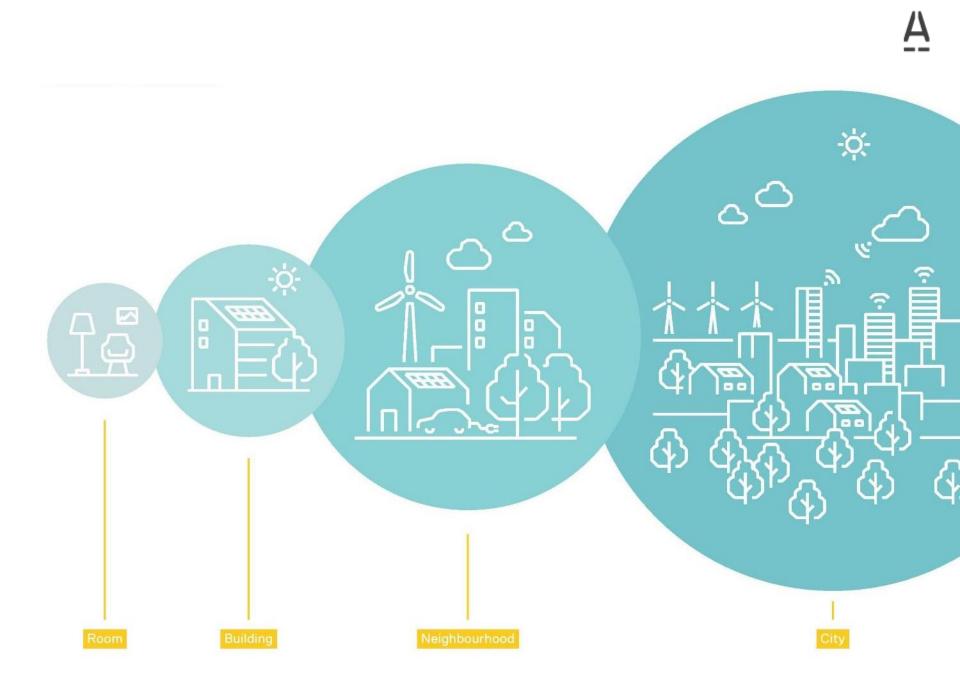
ENVIRONMENTAL MANAGEMENT

CERTIFICATIONS

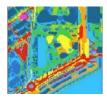
- LEED AP BD+C
- BREEAM International Assessor
- BREEAM in Use Auditor
- LEED AP BD+C, CEA
- WELL AP
- Environmental Management and Sustainability Science
- Environmental Sciences, Policy and Management
- Regional and Environmental Economics
- European and International Public Administration
- Social Policy
- Design Management

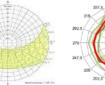
Technische Universität München

AALBORG UNIVERSITY

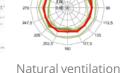

UNIVERSITY OF

BREEAM





Analytic Tools


Conceptual Design

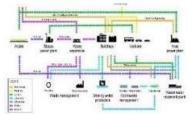
Climatic / Micro climatic conditions

Solar access analysis

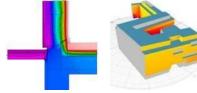
possibilities

CFD

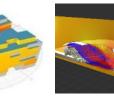
analysis


Urban wind analysis

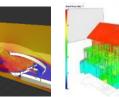
Life cycle analysis

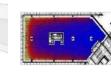


District scale energy concepts

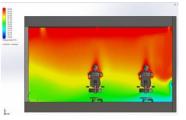


Functional schemes

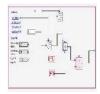

Detailed Design

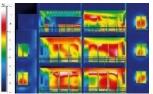

Complex structural analysis


Solar access analysis

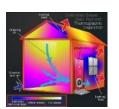

Dynamic energy simulation

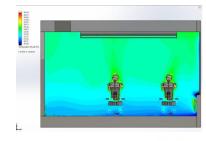
Internal lighting simulation

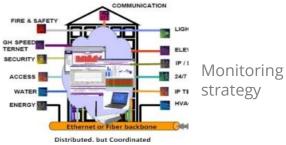

Building scale energy concepts


Building scale comfort concepts

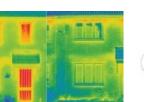
Construction / Occupancy


Dynamic energy simulation


Thermal imaging


Energy metering

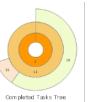
Blower door test


Comfort optimization

Renovation

Complex structural analysis

Thermal imaging



Energy audit

Comfort analysis

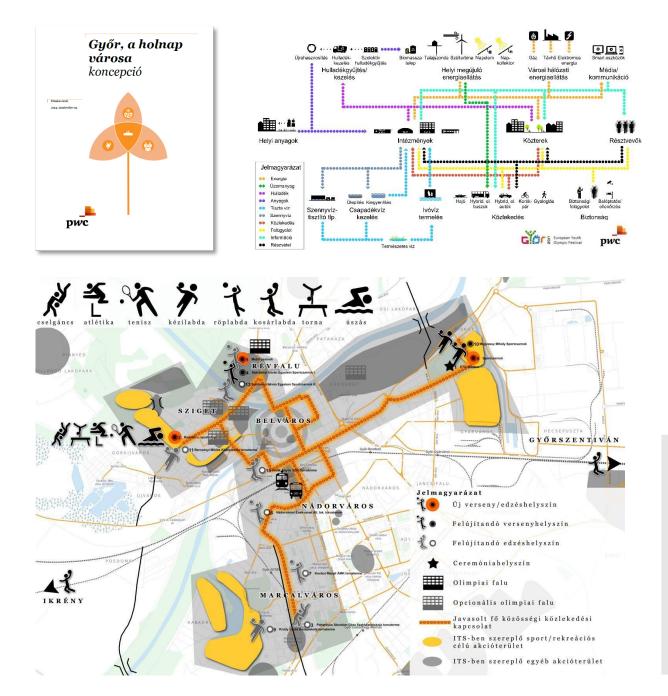
Energy retrofitting strategy and renovation packages

Urban Scale

Sustainable, Resilient & Smart

Cities and neighbourhoods

URBAN DEVELOPMENT STRATEGIES


TOOLS AND METHODS

- Energy modelling (building to urban scale)
- Thermal comfort analysis in community spaces
- Urban data collection, analysis and assessment
- KPI development
- Analytics and simulation of spatial configurations, networks, information distribution
- GIS supporting services
- Spatial network & experience analysis and simulation
- Geosemiotic analysis
- Coordination of demonstration sites for state-of-the-art projects

REFERENCES

- Budapest Smart City Strategic Framework
- Smart City Strategy for Győr (with PwC)
- Budapest 2030 Urban Development Concept
- Integrated Urban Development Strategy for Budapest 2020
- District level climate strategies

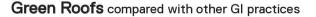

In an ecological model for the City of Győr, we integrated the guidelines of sustainable and compact urban development with a focus on circular economy.

Image: integrated economy scheme; European Youth Olympics Festival opreational scheme, Development opportunities (map) 2017, Győr © ABUD

GREEN ROOFS FOR BUDAPEST

Why Green Roofs are the best option?

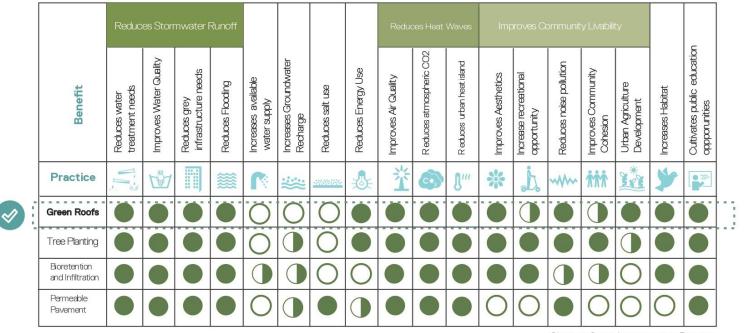
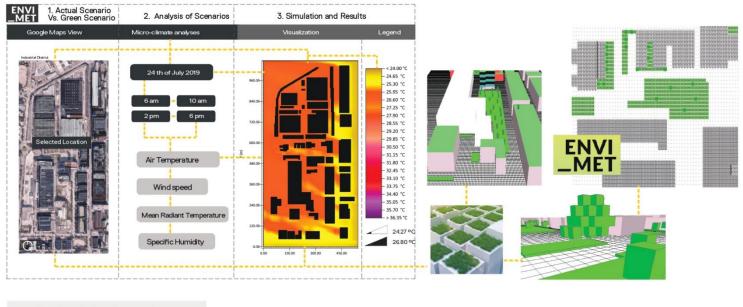



Chart of Green Infrastructure Benefits

The proposal implies a set of urban and environmental analyses, focused on the impacts of neighbourhood-scale green roof implementation for air temperature reduction and thermal outdoor comfort in Budapest.

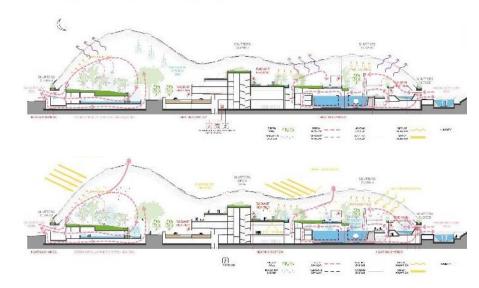
Supported by Microclimate Analysis

Service Design Approach

The practice and participatory indicators demonstrate that green roof cooling effects improve neighbourhood micro-climate. The scenarios will be evaluated through dynamic simulation models using ENVI_met software, by the analysis of Universal Thermal Climate Index (UTCI) for human thermal comfort.

BUDAPEST ZOO

SUSTAINABILITY CONCEPT DEVEL	OPMENT	IDP C	DORDINATION			
STRATEGY FOR ENERGY EFFICIEN		LIFE CYCLE ANALYS	SIS			
NATURE-BASED SOLUTIONS	SOLUTIONS F	OR UHI	EFFECT REDUCTIO	N		
SUSTAINABLE WATER AND MATE	RIAL MANAGEMENT		ANALYSIS	OF ON-S	SITE ENERGY POTENIA	L



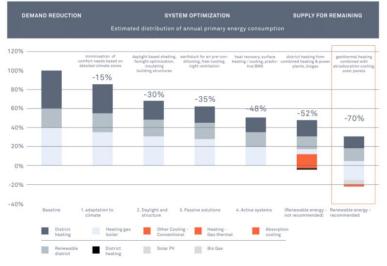

The project area is a UNESCO World Heritage Site in a mixed urban environment, with two thermal water networks.

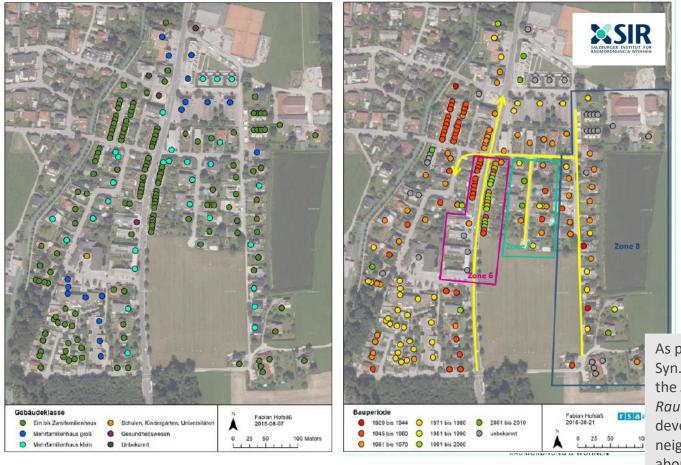
Image: Southwest aerial view of the Pannon Park with the Biodome (Design Phase, 2016) © Budapest Zoo and Botanical Graden We managed to radically reduce the site's energy consumption, using advanced analytic tools and natural solutions, like the utilisation of the cooling effects of plants or the thermal bath's heat and surplus water.

Images: the Biodome under construction © Attila Károly Nagy; seasonal operational schemes and a diagram for system optimization © ABUD

POSITIVE ENERGY DISTRICT, SALZBURG

SUSTAINABILITY CONSULTANCY

DYNAMIC SIMULATION OF ENERGY SYSTEMS


COST ANALYSIS

OCCUPANT BEHAVIOR ANALYSIS

CLIMATE SCANARIO ANAYLSIS

URBAN SCALE MOBILITY ASSESSMENT

EV MODELLING AS POTENTIAL ENERGY STORAGE

As part of the research project Syn.ikia, Smart City Salzburg and the Salzburger Institut für Raumordnung und Wohnen will develop a positive energy neighbourhood of about 30 buildings. Images © SIR

We plan to achieve plus energy production by demand reduction, renewable energy production, harmonization of demand and production and thus peak shaving, and development of microgrids. *Images © SIR*

CLIMATE STRATEGY FOR THE 18TH DISTRICT

A

SUSTAINABLE COMMUNITY

COMPLEX SUSTAINABILITY

SOLUTIONS FOR UHI EFFECT REDUCTION

NATURE-BASED SOLUTIONS

SUSTAINABLE WATER AND MATERIAL MANAGEMENT

ANALYSIS OF ON-SITE ENERGY POTENIAL

The climate strategy will set out the objectives and frameworks for local action on climate change. After the assessment of current emission levels and most endangered natural and built resources, we set up targets and actions in the areas of adaptation, mitigation and citizen-empowerment with participatory methodologies.

A klímastratégia főbb eredményei számokban

36 konkrét terv és intézkedési javaslat a kerület klimavédelmi jövöképéhez

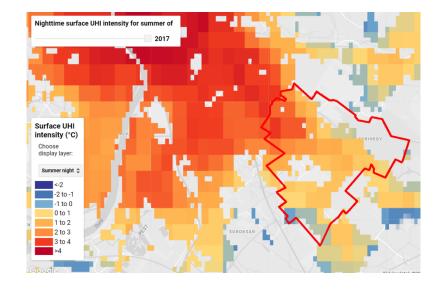
részvételi workshop szakértőkkel, döntéshozókkal és fiatalokkal

levegőminőség-mérő állomás kihelyezése a kerület különböző pontjain

5

közel 600

Lakossági kérdőiv



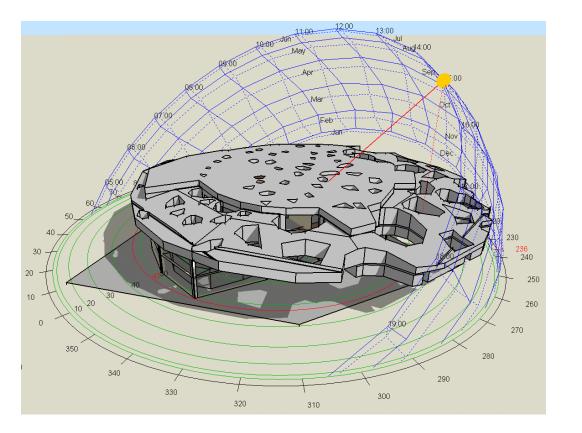
2500 db

a Klima Kupa során gyerekek által kitöltött feladatlap, élménybeszámoló és/vagy rajzos feladat

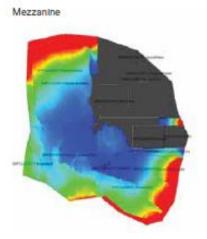
különböző, izgalmas klimabarát kihívás és játék az iskoláknak és övodáknak készített kiadványban

HUNGARIAN HOUSE OF MUSIC

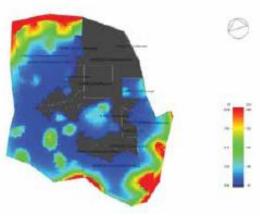
BREEAM NEW CONSTRUCTION MANAGEMENT


BULDING ENERGY MODELLING

DAYLIGHT ANALYSIS

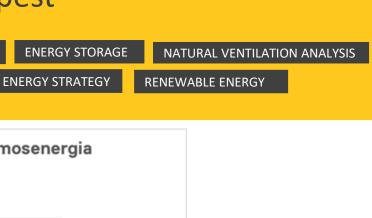

COMFORT ANALYSIS

ANALYISIS OF HVAC SOLUTIONS



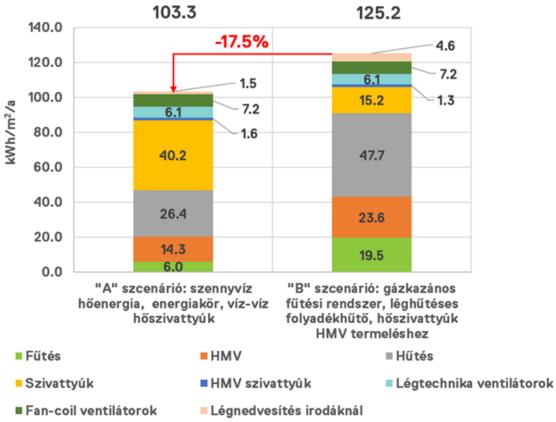
Thermal model of the building to analyse comfort, energy demand and shading performance. *Image © ABUD*

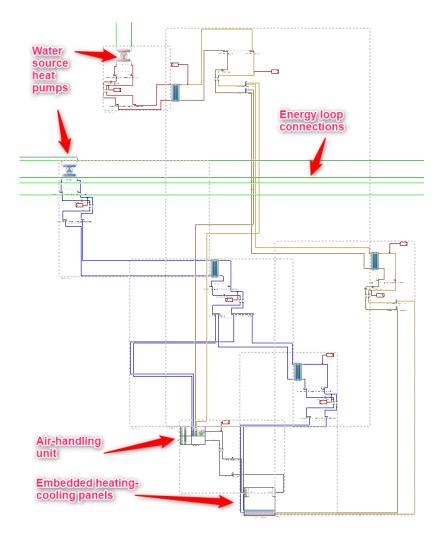
BREEAM daylight analysis confirming minimum values of average daylight factor required for event spaces. *Image © ABUD*


Ground floor

Neighbourhood project, Budapest

ENVELOPE OPTIMIZATION


PARAMETRIC OPTIMIZATION


Primerenergia igények összehasonlítása, villamosenergia primerenergia-tényező=1,8 esetén

SUSTAINABLE WATER MANAGEMENT

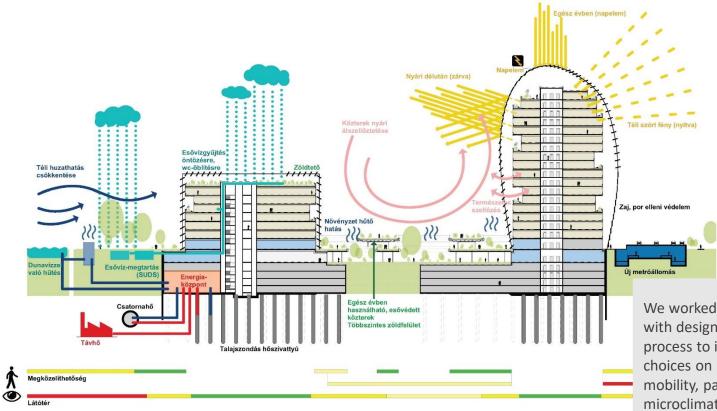
INFRASTRUCTURE STRATEGY

This new neighbourhood has mixed functions (resIdential, office, retail) in total 300,000 sqm. ABUD conducted natural ventilation analysis an envelope optimization with parametric design, renewable energy potential asessment, investigation of electric vehicles' building energy storage potential, etc.

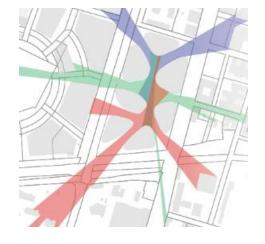
	Szennyvíz hőene	Szennyvíz hőenergia közettéső, viz-víz hőszivattyűk, emergiakör			ittyús rendszer	"B2" szt en árió Távhő, léghűtéses folyadékhűtők, hőszivettyűk HMIV termeléshez				Talajszondás hőszivattyú, bivalens levegő-víz hőszivattyú+távhő			
	Vievizhluzivstyú (Kinis, kinis, HMV igényekre)	Szermpsizhdenegia (enorgiakör Nötéatro)	Sammyvic hömmigia (emergialide fötalasine)	Tauhó (fúteis és HMV igényeline)	Leveşő vizháni vattyü (füsés, hútek, HMV igényekre)	Gáthanin (csécs filtérá Igóryak esetén)	Taché (fétés ettitésére)	Levegő vizhikaivattyü (HMV termelézez)	lághikéses falyadókhinő (hűkösigényekre)	Gárkasán (csúcs filtési igányok esettén)	Tainé (Kitésés Mitv Igényekre)	Levegő vichőszkottyű (főlés, hűtés, HMV igtnyekre)	Talajcaondia Nikalo
Kāpes offitzi atoļes mergiaigānyt?	44	lan -	lgen		-	ligen -	tgen	lgen -	ligen -	ligen -	15 kW marinifik Separatasal sem	lan -	
Karbonsemleges, sagy elacsonykarben technológia?	lgan "A" scannaria: "15.9 e1002 egyenérték/év	lgen "A" snannärid: "11.9 e1002 egyenérték/év	lgen "A" sozenáriá: "15.9 e1002 egyenérték/év	Résiden 1911 szeménis: 1968 el002 egyenénék/év	igen "B1" szemérie: "16.6 e1002 egyenérték/év	Norr "Ni" scarobio "16.5 e1000 egyerobiol/in	Résiden 1921 soonvirie († 17,2) e (1002 egyenéniék/év	lgen 1821 szemária: 113,2 e1002 egyenérték/év	lgan "B2" sostnárió: "17.2 e1CO2 egyenérték/év	Non. "Na surveys (*17.2) etilik operatorije	Réschen "BE" sconside: "16,4 exCO2 egyenéték/év	lgen "BP sceniario: "16.4 e1CO2 egyenérték/év	ligen 1931 soumarid: 11 e1CO2egyenénéi
Energiahelysainen, vagy ahdoefben eldällitva?	44	144	igen.	-	1990 - S.	ipe -	Nee	Sec.	igen -	ligen -		Spec.	lgen
Sashilyaniaak magangadik?	44	ligen -	lgan	lger.	Sec. 1	ligen -	1gen	lgen	igen -	lgen	igen -	ligen -	Igen
24	Klaspes	Ratary	Nationy	Nasarny	Elapa	Базар	Nacany	Elaspa	Kimper	Natury	Naciony	Elaspes	Alacury
Kirmanyag kibocsidas	Nins	Next	Ninca	Nissa	Niss	Vertication	Nas	Nes	Nea		Nna	Nina	Nina
Helyszikolytet	Köcepes, gépészeti halyiságben	Resory	Nasany	Nation	intentis beis group tetter	Kaalmok ethel yezitse gépészeti helyi ségekben	Nasary	intentik belygeny tette	belænstik. Nedy igt og testion	Kasinok elhelyssése gépésset helyisigekben	Al accory	leterstik belvigt sytettie	Kinpes
Seinergilk mis renckzereikiel	Elektromos felhasandias Tafe chenži PV-val	-	igen -	lam.	Dek tromos finh as análias Tafe chaná PV-val	ipe -	igen.	Elektromos feihas aválás Tafe chestá PV-val	Elektromus felhasznália Tafazhará PV-val	ligen -	444	Dektrom an Refhas an Alas Talk dhund PV-val	Dekonamas felhasa Jeliathasă PV-a
Energiatermellis és felhasználás öffedése	44	Klarpes	Klarpes	lan-	lan -	lgen	lgen	lgen	lan -	lgen	lass.	lgen	Igen
Flexibilitäs satikander rensaerekkei	Kierpes	Kiarpes	Kiarpes	lam.	Alacacity Identified had renderer the Lateral	lan	igen.	Naciona Mensina Mesi Pensisana Akto Pantakang akto	Magachdimérsék len2 rendszere kkel husákonyalab	lgen	lars.	Naca any homos de las d remánantes de la procesió	Alassang hidestry di rendesees the lipse
Hatékoryuig	Migas "A" sciannáriá: 540,5 KWh/m2/a	Magas "A" sarannarida 563,5 K60h/m3/a	Magan "A" scarvcárió: 540,5 X405/m2/a	Napcost 1911 soamária: 152,4 KBPs/m2/a	Közepes "B1" szamáriá: 152,4 KBh/ht2/a	Alapeset 1817 secenário: 152,4 1880/m2/a	Alaptost 1917 sostaniai 152,4 1885/tr2/a	Kõmpes "82" scansäriä: 157,6 KWh/ht2/a	Kömpes "82" szamáriá: 257,6 KBh/m2/a	Hapeset 1821 som kirki: 157,6 Kith/m2/a	Napmet "BP scenario: 548,5 K8h/m2/a	Kömpes "83" seamäriä: 348,5 K80h/m2/a	Römpes 1821 somnärkk 3 Killh/vr2/s

Mechanical system of 5th generation district heating-cooling system

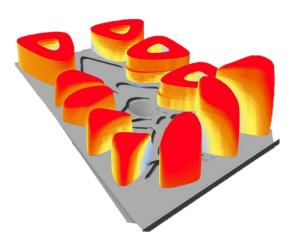
Results of 5th generation district heating-cooling system


CITY 2020 COMMERCIAL DISTRICT

URBAN DESIGN SUPPORT


SPATIAL CONFIGURATION ANALYSIS WITH SPACE SYNTAX

OPTIMIZATION OF PEDESTRIAN MOBILE SYSTEMS


FLOW-BASED LAND-USE PLANNING

We worked in close cooperation with designers in an iterative process to inform design choices on local and larger scale mobility, passive solar design, microclimate (including urban heat-island effect), and sustainable drainage. *Image: operational scheme © ABUD*

We used graph analysis techniques on spatial representations to:

- Predict accessibility from spatial configuration
- Predict ease-of-traverse and wayfinding for pedestrians
- Predict intensity of pedestrian flows
- Objectively assess the visual charachter of built form
- Predict eye-movement of pedestrians due to built form

Images: Analysis of fields of vision; Analysis of built form; UHI analysis; Accessibility prediction of street network © ABUD

Building Scale

Energy efficient & Human-centred Buildings

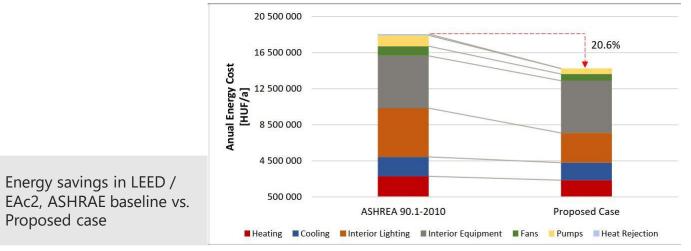
ALPHAGON OFFICE BUILDING

ENVELOPE OPTIMIZATION

RENEWABLE ENERGY

SUSTAINABILITY CONSULTANCY

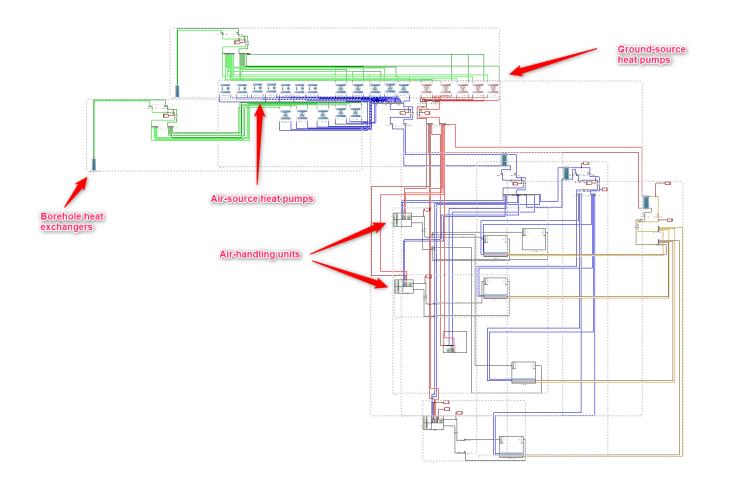
DAYLIGHT ANALYSIS

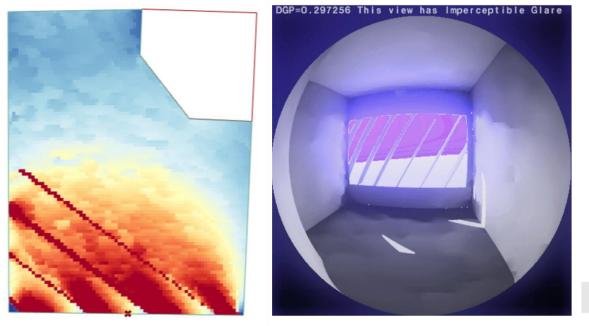

INDOOR COMFORT ANALYSIS

GREEN RATING ASSESSMENT

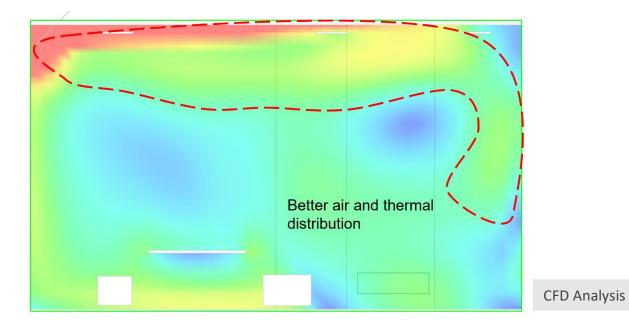
Our focus was on evaluating the potential impacts of characteristically different façade and building services solutions to meet the client's expectations with regards to energy and comfort performance (Energy Optimisation). The studies broadly classify into façade, lighting, HVAC and renewable energy technologies (GSHP, PV) to access and energy performance analysis. *Image © ABUD*

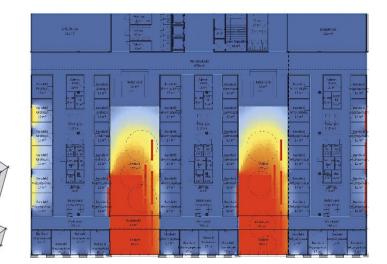
BUDAPEST ONE OFFICES

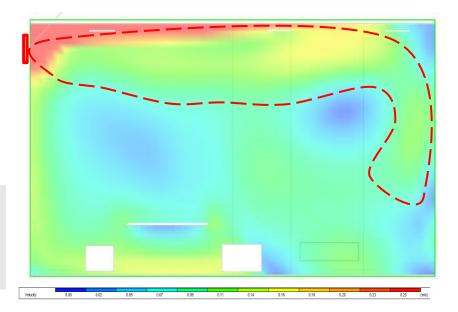



Before the conceptual design phase ABUD conducted investigations regarding climatic conditions, direction of the wind, traffic, transportation, building access and functional relations. The building shape was formed during a parametric design process, and the environmental effects of the decisions were analysed. Computer analyses were run: solar potential analysis, daylight analysis, CFD simulations.

Building Complex, Budapest




Visual representation of the mechanical system model

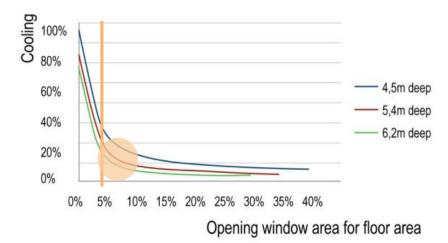

Parametric envelope optimization

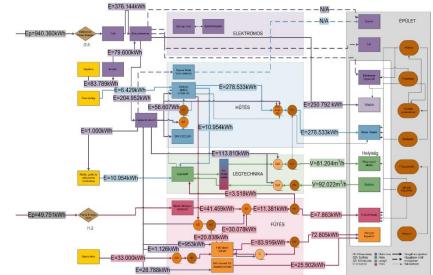
Different skylight-shading options were analyzed in the atria to determine the ideal balance between energy demand and visual comfort.

Room-level CFD analysis was used to optimize the ventilation system in the wards from the thermal comfort perspective.

NORDIC LIGHT OFFICES

SUSTAINABILITY CONSULTANCY	LEED CERTIFICATION		FACADE VENTILLATION COI	NCEPTS	ONSITE-OFFSITE COMPARATIVE ANALYSIS	
COMPLEX DYNAMIC BUILDING ENER	RGY SIMULATION	NE	T ZERO ENERGY CONCEPT	ANALYSIS	S OF RENEWABLE ENERGY POTENTIAL	


One of the key focuses of the project was the thermal resistance optimisation of the building envelope, with special emphasis on the effects of climate change and on summer overheating problems. *Images © ABUD, Bujnovszky Tamás, 2017*


<u>A</u>

The designs were backed by more than a year of research work. The outcome of this research was a holistic system that not only takes into account energy considerations but also covers a wide range of other aspects from built-in materials, through water use and management systems, natural illumination and ventilation concepts to the media interface of the facade.

Images: operational scheme; effectiveness of natural ventillation; energy distribution chart © ABUD

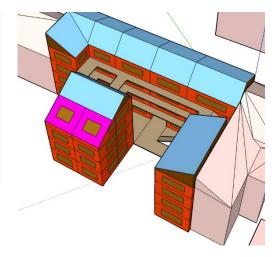
E-CO-HOUSING

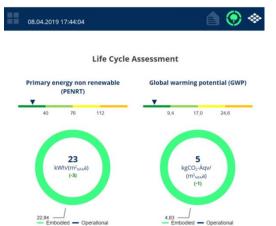
ARCHITECTURAL DESIGN

LIFE CYCLE ANALYSIS

BULDING ENERGY MODELLING

PARTICIPATORY DESIGN: METHODOLOGY & COORDINATION


OCCUPANT BEHAVIOR ANALYSIS



of the building and smart building solutions. Image © ABUD

Life Cycle Analysis (with Caala software) helped to make an informed decision already at an early design phase, providing a chance to compare construction materials. *Images © ABUD*

Research & Innovation

SmartCEPS

SMART CITYDECISION-MAKING TOOLCITY DIAGNOSTICSSUSTAINABLE URBAN TRANSFORMATIONURBAN COMFORT

Smart City Evaluation Platform and Service

SmartCEPS

- _Self-assessment tool
 _Consultancy and action plan
 _Match-making channel
- _Smart governance

SYN.IKIA

Our Tasks

_Development and demonstration of a plus energy multi-story apartment

_Participation in the technological integration of buildings and HVAC systems into a smart environment _Policy mapping

_Analysis and development of a methodology for the measurement of the multiple benefits

JUSTNature

NATURE-BASED SOLUTIONS

GHG EMISSIONS REDUCTION

REGENERATIVE URBAN ECO-SYSTEMS

AIR-QUALITY IMPROVEMENT

ECOSYSTEM SERVICES

Our Tasks

_Development of multidimensional, circular, selflearning monitoring framework and NbS datamodel _Policy and metagovernance toolbox for governments _Development and simulation of a novel governance network model for grassroots nature-building communities

_Urban ecosystem creation, restoration, expansion

Buildings don't use energy: people do

Diagnostics & Rating Systems

LEED Certification

H2Offices

Budapest, Hungary Client: SKANSKA 65 000 m² LEED BD+C Core and Shell Targeted level: Platinum

Nordic Light Trio

Budapest, Hungary Client: SKANSKA Area: 17 501 m² (GBA) LEED BD+C Core and Shell v4 Obtained level: Gold

Mill Park

Budapest, Hungary Client: SKANSKA Area: 56 323 m² (GBA)

Achieved level: Gold

BREEAM[®] BREEAM Certification

Budapest One Business Park

Budapest, Hungary Client: FUTUREAL Area: 66 500 m² (GBA) Achieved level: BREEAM Very Good Design Stage (2019) | BREAAM Very Good Post-Construction Stage (2021)

Corvin Technology & Science Park/1

Budapest, Hungary Client: FUTUREAL Area: 18 134 m² (GLA) Achieved level: Very Good (Post-construction Stage, 2020)

Corvin Technology & Science Park/2

Budapest, Hungary Client: FUTUREAL Area: 15 388 m² (GLA) Achieved level: Very Good (Post-construction Stage, 2020)

WELL Certification

H2Offices

Туре	WELL Core & Shell v2 pilot
Location	Budapest, Hungary
Year	ongoing
Client	SKANSKA
Area	26 148 m² (GBA)
Obtained level	WELL Precertification (2021)

Corvin Innovation Campus 1

Туре	WELL Core & Shell v1
Location	Budapest, Hungary
Year	ongoing
Client	FUTUREAL
Area	19 430 m² (GBA)
Obtained level	WELL Platinum Precertification (2021)

V43 – Advance Tower

Туре	WELL Core & Shell v1
Location	Budapest, Hungary
Year	ongoing
Client	FUTUREAL
Area	12 501 m² (GBA)
Obtained level	WELL Platinum Pre-certification

Every project is unique. We adapt our

solutions to the climatic, socio-cultural

and economic conditions.

Advanced Building & Urban Design

THANK YOU FOR YOUR ATTENTION

ABUD Kft. 1144 Budapest, Orlay u. 2/b. <u>info@abud.hu</u> +36 30 823 67 82 www.abud.hu